-108(x^2-3)/(x^2+9)^3=0

Simple and best practice solution for -108(x^2-3)/(x^2+9)^3=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -108(x^2-3)/(x^2+9)^3=0 equation:



-108(x^2-3)/(x^2+9)^3=0
Domain of the equation: (x^2+9)^3!=0
x∈R
We multiply all the terms by the denominator
-108(x^2-3)=0
We multiply parentheses
-108x^2+324=0
a = -108; b = 0; c = +324;
Δ = b2-4ac
Δ = 02-4·(-108)·324
Δ = 139968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{139968}=\sqrt{46656*3}=\sqrt{46656}*\sqrt{3}=216\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-216\sqrt{3}}{2*-108}=\frac{0-216\sqrt{3}}{-216} =-\frac{216\sqrt{3}}{-216} =-\frac{\sqrt{3}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+216\sqrt{3}}{2*-108}=\frac{0+216\sqrt{3}}{-216} =\frac{216\sqrt{3}}{-216} =\frac{\sqrt{3}}{-1} $

See similar equations:

| 7q^2+11=-4 | | (32/n)=-8 | | 1/6x/7=3/4x | | 36x/(x^2+9)^2=0 | | 1/6x/(71)=3/4x | | 2(x+2)=9 | | 0.01x=5.90 | | 0,3x=12 | | 6=-2/3+x | | (4x-5)=2x+25 | | Y=125-0,4x | | 13=3y+7 | | -3(2n-11)=n+26 | | 1/6x/71=3/4x | | x*334=45678 | | 16x^2+18x+x=0 | | 6(6-4)=6b-24 | | 7(3x-1)=-49 | | 4(2+6x)=-160 | | -3=t-8 | | 5x/x-2+3/x+2=-6/x^2-9 | | 2x+1+3x+x+5=180 | | -6x+5=7x+122 | | 7-4x=-7x+25 | | x+4/2+3x-2/5=3/5 | | 12=w+18 | | 2+7x=-x-94 | | 3.5-a=675 | | x+6x=3000 | | -3+6x=-2x-67 | | Z^3+3z^2+7z-75=0 | | x+4.5=−18.9 |

Equations solver categories